
Netdev Conference 2022

P4-TC CI/CD and Test
Framework
Deb Chatterjee - Sr. Director Intel
Khan, Mohd Arif <mohd.arif.khan@intel.com> - Cloud Engineer, Intel
Pottimurthy, Sathya Narayana - Cloud Engineer, Intel
Sambasivam, Balachandher - Director, Intel
Pedro Tammela - SW Engineer, Mojatatu
Victor Nogueira - SW Engineer, Mojatatu

3

Github Actions
For every commit in a GitHub PR we run:

• Checkpatch.pl

• 32/64-bit builds on GCC

• 32/64-bit builds on Clang

• Sparse

• Clang static analyzer

These actions have been running since day one
• Warned us about many code style issues

• Caught a few bugs

• Makes sure every commit is buildable

4

P4-TC CI/CD

5

6

CI/CD Flow

7

TDC tests
● Control path tests for each object (Pipeline, metadata, tables …)

● As of now we have 376 tests

● Using TC's JSON output to verify the outputs

● We've been adding tests since day one

● Looking to also add data path tests

8

P4-TC Fuzzy Testing with syzkaller

9

P4-TC Template for syzkaller
System calls and resources used for fuzzing

socket$nl_route_p4 => Returns the netlink route socket
sendmsg$nl_route_p4_sched => Creates the p4tc netlink messages and sends to kernel

size_t sendmsg(int sockfd, const struct msghdr *msg, int flags)

P4TC netlink messages for following objects
Pipeline
Action
Table Class
Table Instance
Table Entry

Important files being used/added
include/uapi/linux/p4tc.h => kernel inclusion file
sys/linux/socket_netlink_route_p4_sched.txt => netlink message description for Syzkaller

Note: Currently syzkaller runs on 3 Machines(112 cpus, 95 GB) 24x7 with 32 VM’s(32 CPUs, 3GB).
We are integrating with CI/CD to run with every pull request.

p4tc.cfg: "enable_syscalls": ["sendmsg$nl_route_p4_sched","socket$nl_route_p4"],

1
0

Fuzzy testing - NL Msg Definition
Netlink message format

▪ Netlink Header

▪ IP Service Template

▪ IP Service specific TLV’s

1
1

Crashes Observed
Crash Type Statistics

Root cause , Instances

Dereference of Null Pointer 1,5

Stack out of bounds 1,7

Use after free 2,16

General protection fault 1,3

Memory leaks 1,1

RCU Stall during Object dump 1,1

Soft lockups, work-queue stalls 1,1

We reproduced the crashes using syz-repro utility and the generated c-code helps to fix the crashes

Crashes Observed

1
2

Use-After-free Bug Walkthrough

Fix:

278 idr_rm:

279 idr_remove(&pipeline_idr,pipeline->common.p_id);

Stack out of bounds
- if ((nla_len(tb[P4TC_PATH]) / sizeof(u32)) > P4TC_PATH_MAX - 1) {

NL_SET_ERR_MSG(extack, "Path is too big");

return -E2BIG;

+ if (nla_len(tb[P4TC_PATH]) > ((P4TC_PATH_MAX - P4TC_TBCID_IDX) * sizeof(u32))) {

memcpy(&ids[P4TC_TBCID_IDX], arg_ids, nla_len(p4tca[P4TC_PATH]));

1
3

P4-TC Control Path Performance

1
4

1. Triggered by CI/CD during every PR to catch control performance related

issues

2. For this we have added a utility “perf_app” which will give us

• Update rate (rate of update of table entries)/throughput)

• Synchronous : waits for acknowledgement

• Asynchronous: Do not wait for acknowledgement (Slightly better

performance than Synchronous)

./perf_app --rate --batch 16 --sync

• Latency values (time to add a entry in kernel tables)

./perf_app --latency --batch 16 --sync

1.Preloads the netlink messages

Control Path Performance - (1/2)r
formance

1
5

1.Throughput evaluation

▪ Create 1 pipeline, 1table class, 32 table instances

▪ Keep adding 60K Rules in each table by changing key and record throughput

2.Observations

▪ Asynchronous mode throughput significantly higher than synchronous mode for

lower batch sizes

▪ Both are approximately same at batch sizes 16

▪ Throughput is directly proportional to batch size

Note: Expect to publish results shortly

Control Path Performance - (2/2)rol
path performance

1
6

P4-TC Testgen

1
7

P4 TestGen Overview

https://github.com/p4lang/p4c/tree/main/backends/p4tools/testgen

1
8

P4 testgen flow for P4-TC

Thank You

